123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296 |
- import os
- import PySimpleGUI as sg
- import serial
- import numpy as np
- import time
- # sg.preview_all_look_and_feel_themes() #to display all themes
- # open serial communication
- ser = serial.Serial("COM7", 9600)
- # Waiting for arduino to start sketch
- time.sleep(2)
- slider_width = 50
- slider_height = 40
- button_width = 10
- button_height = 2
- stepper_range = ((0, 360), (-115, 115), (-115, 115), (-115, 115))
- stepper_default_values_rel = [0, 0, 0, 0]
- stepper_og_values_rel = [0, 0, 0, 0]
- stepper_moveTo_angels_rel = [0, 0, 0, 0]
- stepper_actual_angels_rel = [0, 0, 0, 0]
- segments_length = [15, 50, 40, 30]
- end_effector_actual_pos = [0, 0, 0] # y,z coordination of end effector and rotation angel theta
- # ik_m3_actual_pos = [0, 0, 0] # y,z coordination of m3 and rotation angel theta
- end_effector_move_to_pos = [0, 0, 0] # y,z coordination of end effector and rotation angel theta
- ik_step_size = 5 # default step size 5 cm
- arm_isCalibrated = 0
- arm_calibrate = 0
- FK_slider_values = [0, 0, 0, 0]
- # Definition of function to calculate angels of a triangle with known side lengths using the law of cosine
- def calculate_triangle_angles(a, b, c):
- angle_a = np.rad2deg(np.arccos((b ** 2 + c ** 2 - a ** 2) / (2 * b * c)))
- angle_b = np.rad2deg(np.arccos((c ** 2 + a ** 2 - b ** 2) / (2 * c * a)))
- angle_c = 180 - angle_a - angle_b # The sum of angles in a triangle is 180 degrees
- return angle_a, angle_b, angle_c
- # Definition of function to calculate joints angels relative to horizon
- def calculate_angels_to_horizon(relative_angels_stepper):
- absolute_angels = [0, 0, 0, 0]
- absolute_angels[0] = relative_angels_stepper[0]
- absolute_angels[1] = absolute_angels[0] + relative_angels_stepper[1]
- absolute_angels[2] = absolute_angels[1] + relative_angels_stepper[2]
- absolute_angels[3] = absolute_angels[2] + relative_angels_stepper[3]
- for j in range(4):
- if absolute_angels[j] > 360:
- absolute_angels[j] = absolute_angels[j] - 360
- print("relative:", relative_angels_stepper,
- "absolute:", absolute_angels)
- return absolute_angels
- # Definition of function to calculate joints angels relative to another, based on their angels relative to horizon
- def calculate_angels_relative(absolute_angels_stepper):
- relative_angels = [0, 0, 0, 0]
- relative_angels[0] = absolute_angels_stepper[0]
- relative_angels[1] = absolute_angels_stepper[1] - relative_angels[0]
- relative_angels[2] = absolute_angels_stepper[2] - relative_angels[1]
- relative_angels[3] = absolute_angels_stepper[3] - relative_angels[2]
- for j in range(4):
- if relative_angels[j] > 360:
- relative_angels[j] = relative_angels[j] - 360
- return relative_angels
- # Definition of function to calculate coordination of end effector and Motor3
- def fk_calculate_position(stepper_angels_rel):
- alpha_rel = np.array(stepper_angels_rel) * (np.pi / 180)
- alpha = calculate_angels_to_horizon(alpha_rel)
- start_x = 0
- start_y = 0
- z0 = np.cos(alpha[0]) * segments_length[0]
- y0 = np.sin(alpha[0]) * segments_length[0]
- y1 = y0 + np.cos(alpha[1]) * segments_length[1]
- z1 = z0 + np.sin(alpha[1]) * segments_length[1]
- y2 = y1 + np.cos(alpha[2]) * segments_length[2]
- z2 = z1 + np.sin(alpha[2]) * segments_length[2]
- y3 = y2 + np.cos(alpha[3]) * segments_length[3]
- z3 = z2 + np.sin(alpha[3]) * segments_length[3]
- end_effector_pos_2d = [y3, z3, stepper_angels_rel[0]]
- m3_pos_2d = [y2, z2, stepper_angels_rel[0]]
- return end_effector_pos_2d
- # Definition of function to calculate stepper angels to move end effector to desired coordination by changing M2 and M3
- def ik_calculate_angels(end_effector_position):
- z0 = segments_length[0]
- y0 = segments_length[1]
- alpha = [90, -90, 0, 0] # relative stepper angels to reach desired coordination
- beta = [0, 0, 90] # angels of right triangle
- y = end_effector_position[0] - y0
- z = end_effector_position[1] - z0
- l2 = segments_length[2]
- l3 = segments_length[3]
- l_h = np.sqrt(np.square(y) + np.square(z)) # calculating hypothesis
- gamma = calculate_triangle_angles(l3, l2, l_h)
- beta[0] = np.rad2deg(np.arctan2(z, y))
- beta[1] = np.rad2deg(np.arctan2(y, z))
- alpha[2] = gamma[0] + beta[0]
- alpha[3] = -(180 - gamma[2])
- return alpha
- # Define function to update slider values to match actual stepper values
- def update_slider_values(slider_updated_values):
- window['-Slider_Stepper0_FK-'].update(slider_updated_values[0])
- window['-Slider_Stepper1-'].update(slider_updated_values[1])
- window['-Slider_Stepper2-'].update(slider_updated_values[2])
- window['-Slider_Stepper3_FK-'].update(slider_updated_values[3])
- # Define function to get chosen step size
- def get_step_size():
- if values['-Radio_Option1-']:
- step_size = 1
- elif values['-Radio_Option2-']:
- step_size = 5
- elif values['-Radio_Option3-']:
- step_size = 10
- return step_size
- # Calculate Default angels and position
- end_effector_actual_pos = fk_calculate_position(stepper_actual_angels_rel)
- # Definition of GUI Layout
- FK_column = [
- [sg.Text("Forward Kinematics:")],
- [sg.Text("")],
- [sg.Text("Stepper motor 0")],
- [sg.Text(""),
- sg.Slider(range=(0, 360), size=(slider_width, slider_height), default_value=stepper_default_values_rel[0],
- orientation="h", key="-Slider_Stepper0_FK-"), sg.Text("")],
- [sg.Text("Stepper motor 1")],
- [sg.Text(""),
- sg.Slider(range=(-115, 115), size=(slider_width, slider_height), default_value=stepper_default_values_rel[1],
- orientation="h", key="-Slider_Stepper1-"), sg.Text("")],
- [sg.Text("Stepper motor 2")],
- [sg.Text(""),
- sg.Slider(range=(-115, 115), size=(slider_width, slider_height), default_value=stepper_default_values_rel[2],
- orientation="h", key="-Slider_Stepper2-"), sg.Text("")],
- [sg.Text("Stepper motor 3")],
- [sg.Text(""),
- sg.Slider(range=(-115, 115), size=(slider_width, slider_height), default_value=stepper_default_values_rel[3],
- orientation="h", key="-Slider_Stepper3_FK-"), sg.Text("")],
- [sg.Button("Submit", key="-FK_Set_Button-", size=(button_width, button_height)),
- sg.Button("Reset", key="-FK_Reset_Button-", size=(button_width, button_height)),
- sg.Button("Calibrate", key="-FK_Calibrate_Button-", size=(button_width, button_height))]
- ]
- IK_column = [
- [sg.Text("Inverse Kinematics:")],
- [sg.Text("")],
- [sg.Text("Choose Step size:"),
- sg.Radio('1 cm', "RADIO1", key="-Radio_Option1-"),
- sg.Radio('5 cm', "RADIO1", key="-Radio_Option2-", default=True, ),
- sg.Radio('10 cm', "RADIO1", key="-Radio_Option3-")],
- [sg.Text(""), sg.Text(""), sg.Text(""),
- sg.Button("Up", key="-IK_Up_Button-", size=(button_width, button_height))],
- [sg.Button("Backward", key="-IK_Backward_Button-", size=(button_width, button_height)),
- sg.Button("Forward", key="-IK_Forward_Button-", size=(button_width, button_height))],
- [sg.Text(""), sg.Text(""), sg.Text(""),
- sg.Button("Down", key="-IK_Down_Button-", size=(button_width, button_height))],
- [sg.Text("")],
- [sg.Text("")],
- # [sg.Text(ik_m3_actual_pos, key="-m3_pos-")],
- [sg.Text("")]
- ]
- layout = [
- [
- sg.Column(FK_column),
- sg.VSeparator(),
- sg.Column(IK_column), # vertical_alignment="Top"
- sg.VSeparator(),
- ]
- ]
- window = sg.Window("Robot Control", layout)
- # Loop for GUI feedback and Serial Communication
- while True:
- event, values = window.read()
- if event == "EXIT" or event == sg.WIN_CLOSED:
- break
- elif event == "-FK_Set_Button-" and arm_isCalibrated == 1:
- FK_slider_values[0] = values["-Slider_Stepper0_FK-"]
- FK_slider_values[1] = values["-Slider_Stepper1-"]
- FK_slider_values[2] = values["-Slider_Stepper2-"]
- FK_slider_values[3] = values["-Slider_Stepper3_FK-"]
- stepper_moveTo_angels_rel = np.array(stepper_actual_angels_rel) - np.array(FK_slider_values)
- stepper_actual_angels_rel = np.array(FK_slider_values)
- elif event == "-FK_Calibrate_Button-":
- update_slider_values(stepper_og_values_rel)
- arm_calibrate = 1
- arm_isCalibrated = 1
- stepper_actual_angels_rel = stepper_og_values_rel
- elif event == "-FK_Reset_Button-":
- update_slider_values(stepper_default_values_rel)
- # Do not forget maximal reachable coordination!
- elif event == "-IK_Up_Button-" and arm_isCalibrated == 1:
- ik_step_size = get_step_size()
- end_effector_move_to_pos = np.array(end_effector_actual_pos) + np.array([0, ik_step_size, 0])
- end_effector_move_to_pos[2] = values["-Slider_Stepper0_FK-"]
- stepper_moveTo_angels_rel = np.array(stepper_actual_angels_rel) - np.array(
- ik_calculate_angels(end_effector_move_to_pos))
- stepper_actual_angels_rel = np.array(ik_calculate_angels(end_effector_move_to_pos))
- update_slider_values(stepper_actual_angels_rel)
- ik_m3_actual_pos = end_effector_move_to_pos
- elif event == "-IK_Down_Button-" and arm_isCalibrated == 1:
- ik_step_size = get_step_size()
- end_effector_move_to_pos = np.array(end_effector_actual_pos) - np.array([0, ik_step_size, 0])
- end_effector_move_to_pos[2] = values["-Slider_Stepper0_FK-"]
- stepper_moveTo_angels_rel = np.array(stepper_actual_angels_rel) - np.array(
- ik_calculate_angels(end_effector_move_to_pos))
- stepper_actual_angels_rel = np.array(ik_calculate_angels(end_effector_move_to_pos))
- update_slider_values(stepper_actual_angels_rel)
- end_effector_actual_pos = end_effector_move_to_pos
- elif event == "-IK_Forward_Button-" and arm_isCalibrated == 1:
- ik_step_size = get_step_size()
- end_effector_move_to_pos = np.array(end_effector_actual_pos) + np.array([ik_step_size, 0, 0])
- end_effector_move_to_pos[2] = values["-Slider_Stepper0_FK-"]
- stepper_moveTo_angels_rel = np.array(stepper_actual_angels_rel) - np.array(
- ik_calculate_angels(end_effector_move_to_pos))
- stepper_actual_angels_rel = np.array(ik_calculate_angels(end_effector_move_to_pos))
- update_slider_values(stepper_actual_angels_rel)
- end_effector_actual_pos = end_effector_move_to_pos
- elif event == "-IK_Backward_Button-" and arm_isCalibrated == 1:
- ik_step_size = get_step_size()
- end_effector_move_to_pos = np.array(end_effector_actual_pos) - np.array([ik_step_size, 0, 0])
- end_effector_move_to_pos[2] = values["-Slider_Stepper0_FK-"]
- stepper_moveTo_angels_rel = np.array(stepper_actual_angels_rel) - np.array(
- ik_calculate_angels(end_effector_move_to_pos))
- stepper_actual_angels_rel = np.array(ik_calculate_angels(end_effector_move_to_pos))
- update_slider_values(stepper_actual_angels_rel)
- end_effector_actual_pos = end_effector_move_to_pos
- stepper_actual_angels_abs = calculate_angels_to_horizon(stepper_actual_angels_rel)
- end_effector_actual_pos = fk_calculate_position(stepper_actual_angels_abs)
- # Formate data before sending
- # str(arm_calibrate)
- data = "<" + str(0) + "," + str(stepper_moveTo_angels_rel[0]) + "," + str(stepper_moveTo_angels_rel[1]) \
- + "," + str(stepper_moveTo_angels_rel[2]) + "," + str(stepper_moveTo_angels_rel[3]) + ">"
- print(data)
- ser.write(data.encode())
- received_string = ser.readline().decode()
- print(received_string)
- stepper_moveTo_angels_rel = [0, 0, 0, 0]
- arm_calibrate = 1
- ser.close()
- window.close()
|