1
0

FullArmControlG2.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296
  1. import os
  2. import PySimpleGUI as sg
  3. import serial
  4. import numpy as np
  5. import time
  6. # sg.preview_all_look_and_feel_themes() #to display all themes
  7. # open serial communication
  8. ser = serial.Serial("COM7", 9600)
  9. # Waiting for arduino to start sketch
  10. time.sleep(2)
  11. slider_width = 50
  12. slider_height = 40
  13. button_width = 10
  14. button_height = 2
  15. stepper_range = ((0, 360), (-115, 115), (-115, 115), (-115, 115))
  16. stepper_default_values_rel = [0, 0, 0, 0]
  17. stepper_og_values_rel = [0, 0, 0, 0]
  18. stepper_moveTo_angels_rel = [0, 0, 0, 0]
  19. stepper_actual_angels_rel = [0, 0, 0, 0]
  20. segments_length = [15, 50, 40, 30]
  21. end_effector_actual_pos = [0, 0, 0] # y,z coordination of end effector and rotation angel theta
  22. # ik_m3_actual_pos = [0, 0, 0] # y,z coordination of m3 and rotation angel theta
  23. end_effector_move_to_pos = [0, 0, 0] # y,z coordination of end effector and rotation angel theta
  24. ik_step_size = 5 # default step size 5 cm
  25. arm_isCalibrated = 0
  26. arm_calibrate = 0
  27. FK_slider_values = [0, 0, 0, 0]
  28. # Definition of function to calculate angels of a triangle with known side lengths using the law of cosine
  29. def calculate_triangle_angles(a, b, c):
  30. angle_a = np.rad2deg(np.arccos((b ** 2 + c ** 2 - a ** 2) / (2 * b * c)))
  31. angle_b = np.rad2deg(np.arccos((c ** 2 + a ** 2 - b ** 2) / (2 * c * a)))
  32. angle_c = 180 - angle_a - angle_b # The sum of angles in a triangle is 180 degrees
  33. return angle_a, angle_b, angle_c
  34. # Definition of function to calculate joints angels relative to horizon
  35. def calculate_angels_to_horizon(relative_angels_stepper):
  36. absolute_angels = [0, 0, 0, 0]
  37. absolute_angels[0] = relative_angels_stepper[0]
  38. absolute_angels[1] = absolute_angels[0] + relative_angels_stepper[1]
  39. absolute_angels[2] = absolute_angels[1] + relative_angels_stepper[2]
  40. absolute_angels[3] = absolute_angels[2] + relative_angels_stepper[3]
  41. for j in range(4):
  42. if absolute_angels[j] > 360:
  43. absolute_angels[j] = absolute_angels[j] - 360
  44. print("relative:", relative_angels_stepper,
  45. "absolute:", absolute_angels)
  46. return absolute_angels
  47. # Definition of function to calculate joints angels relative to another, based on their angels relative to horizon
  48. def calculate_angels_relative(absolute_angels_stepper):
  49. relative_angels = [0, 0, 0, 0]
  50. relative_angels[0] = absolute_angels_stepper[0]
  51. relative_angels[1] = absolute_angels_stepper[1] - relative_angels[0]
  52. relative_angels[2] = absolute_angels_stepper[2] - relative_angels[1]
  53. relative_angels[3] = absolute_angels_stepper[3] - relative_angels[2]
  54. for j in range(4):
  55. if relative_angels[j] > 360:
  56. relative_angels[j] = relative_angels[j] - 360
  57. return relative_angels
  58. # Definition of function to calculate coordination of end effector and Motor3
  59. def fk_calculate_position(stepper_angels_rel):
  60. alpha_rel = np.array(stepper_angels_rel) * (np.pi / 180)
  61. alpha = calculate_angels_to_horizon(alpha_rel)
  62. start_x = 0
  63. start_y = 0
  64. z0 = np.cos(alpha[0]) * segments_length[0]
  65. y0 = np.sin(alpha[0]) * segments_length[0]
  66. y1 = y0 + np.cos(alpha[1]) * segments_length[1]
  67. z1 = z0 + np.sin(alpha[1]) * segments_length[1]
  68. y2 = y1 + np.cos(alpha[2]) * segments_length[2]
  69. z2 = z1 + np.sin(alpha[2]) * segments_length[2]
  70. y3 = y2 + np.cos(alpha[3]) * segments_length[3]
  71. z3 = z2 + np.sin(alpha[3]) * segments_length[3]
  72. end_effector_pos_2d = [y3, z3, stepper_angels_rel[0]]
  73. m3_pos_2d = [y2, z2, stepper_angels_rel[0]]
  74. return end_effector_pos_2d
  75. # Definition of function to calculate stepper angels to move end effector to desired coordination by changing M2 and M3
  76. def ik_calculate_angels(end_effector_position):
  77. z0 = segments_length[0]
  78. y0 = segments_length[1]
  79. alpha = [90, -90, 0, 0] # relative stepper angels to reach desired coordination
  80. beta = [0, 0, 90] # angels of right triangle
  81. y = end_effector_position[0] - y0
  82. z = end_effector_position[1] - z0
  83. l2 = segments_length[2]
  84. l3 = segments_length[3]
  85. l_h = np.sqrt(np.square(y) + np.square(z)) # calculating hypothesis
  86. gamma = calculate_triangle_angles(l3, l2, l_h)
  87. beta[0] = np.rad2deg(np.arctan2(z, y))
  88. beta[1] = np.rad2deg(np.arctan2(y, z))
  89. alpha[2] = gamma[0] + beta[0]
  90. alpha[3] = -(180 - gamma[2])
  91. return alpha
  92. # Define function to update slider values to match actual stepper values
  93. def update_slider_values(slider_updated_values):
  94. window['-Slider_Stepper0_FK-'].update(slider_updated_values[0])
  95. window['-Slider_Stepper1-'].update(slider_updated_values[1])
  96. window['-Slider_Stepper2-'].update(slider_updated_values[2])
  97. window['-Slider_Stepper3_FK-'].update(slider_updated_values[3])
  98. # Define function to get chosen step size
  99. def get_step_size():
  100. if values['-Radio_Option1-']:
  101. step_size = 1
  102. elif values['-Radio_Option2-']:
  103. step_size = 5
  104. elif values['-Radio_Option3-']:
  105. step_size = 10
  106. return step_size
  107. # Calculate Default angels and position
  108. end_effector_actual_pos = fk_calculate_position(stepper_actual_angels_rel)
  109. # Definition of GUI Layout
  110. FK_column = [
  111. [sg.Text("Forward Kinematics:")],
  112. [sg.Text("")],
  113. [sg.Text("Stepper motor 0")],
  114. [sg.Text(""),
  115. sg.Slider(range=(0, 360), size=(slider_width, slider_height), default_value=stepper_default_values_rel[0],
  116. orientation="h", key="-Slider_Stepper0_FK-"), sg.Text("")],
  117. [sg.Text("Stepper motor 1")],
  118. [sg.Text(""),
  119. sg.Slider(range=(-115, 115), size=(slider_width, slider_height), default_value=stepper_default_values_rel[1],
  120. orientation="h", key="-Slider_Stepper1-"), sg.Text("")],
  121. [sg.Text("Stepper motor 2")],
  122. [sg.Text(""),
  123. sg.Slider(range=(-115, 115), size=(slider_width, slider_height), default_value=stepper_default_values_rel[2],
  124. orientation="h", key="-Slider_Stepper2-"), sg.Text("")],
  125. [sg.Text("Stepper motor 3")],
  126. [sg.Text(""),
  127. sg.Slider(range=(-115, 115), size=(slider_width, slider_height), default_value=stepper_default_values_rel[3],
  128. orientation="h", key="-Slider_Stepper3_FK-"), sg.Text("")],
  129. [sg.Button("Submit", key="-FK_Set_Button-", size=(button_width, button_height)),
  130. sg.Button("Reset", key="-FK_Reset_Button-", size=(button_width, button_height)),
  131. sg.Button("Calibrate", key="-FK_Calibrate_Button-", size=(button_width, button_height))]
  132. ]
  133. IK_column = [
  134. [sg.Text("Inverse Kinematics:")],
  135. [sg.Text("")],
  136. [sg.Text("Choose Step size:"),
  137. sg.Radio('1 cm', "RADIO1", key="-Radio_Option1-"),
  138. sg.Radio('5 cm', "RADIO1", key="-Radio_Option2-", default=True, ),
  139. sg.Radio('10 cm', "RADIO1", key="-Radio_Option3-")],
  140. [sg.Text(""), sg.Text(""), sg.Text(""),
  141. sg.Button("Up", key="-IK_Up_Button-", size=(button_width, button_height))],
  142. [sg.Button("Backward", key="-IK_Backward_Button-", size=(button_width, button_height)),
  143. sg.Button("Forward", key="-IK_Forward_Button-", size=(button_width, button_height))],
  144. [sg.Text(""), sg.Text(""), sg.Text(""),
  145. sg.Button("Down", key="-IK_Down_Button-", size=(button_width, button_height))],
  146. [sg.Text("")],
  147. [sg.Text("")],
  148. # [sg.Text(ik_m3_actual_pos, key="-m3_pos-")],
  149. [sg.Text("")]
  150. ]
  151. layout = [
  152. [
  153. sg.Column(FK_column),
  154. sg.VSeparator(),
  155. sg.Column(IK_column), # vertical_alignment="Top"
  156. sg.VSeparator(),
  157. ]
  158. ]
  159. window = sg.Window("Robot Control", layout)
  160. # Loop for GUI feedback and Serial Communication
  161. while True:
  162. event, values = window.read()
  163. if event == "EXIT" or event == sg.WIN_CLOSED:
  164. break
  165. elif event == "-FK_Set_Button-" and arm_isCalibrated == 1:
  166. FK_slider_values[0] = values["-Slider_Stepper0_FK-"]
  167. FK_slider_values[1] = values["-Slider_Stepper1-"]
  168. FK_slider_values[2] = values["-Slider_Stepper2-"]
  169. FK_slider_values[3] = values["-Slider_Stepper3_FK-"]
  170. stepper_moveTo_angels_rel = np.array(stepper_actual_angels_rel) - np.array(FK_slider_values)
  171. stepper_actual_angels_rel = np.array(FK_slider_values)
  172. elif event == "-FK_Calibrate_Button-":
  173. update_slider_values(stepper_og_values_rel)
  174. arm_calibrate = 1
  175. arm_isCalibrated = 1
  176. stepper_actual_angels_rel = stepper_og_values_rel
  177. elif event == "-FK_Reset_Button-":
  178. update_slider_values(stepper_default_values_rel)
  179. # Do not forget maximal reachable coordination!
  180. elif event == "-IK_Up_Button-" and arm_isCalibrated == 1:
  181. ik_step_size = get_step_size()
  182. end_effector_move_to_pos = np.array(end_effector_actual_pos) + np.array([0, ik_step_size, 0])
  183. end_effector_move_to_pos[2] = values["-Slider_Stepper0_FK-"]
  184. stepper_moveTo_angels_rel = np.array(stepper_actual_angels_rel) - np.array(
  185. ik_calculate_angels(end_effector_move_to_pos))
  186. stepper_actual_angels_rel = np.array(ik_calculate_angels(end_effector_move_to_pos))
  187. update_slider_values(stepper_actual_angels_rel)
  188. ik_m3_actual_pos = end_effector_move_to_pos
  189. elif event == "-IK_Down_Button-" and arm_isCalibrated == 1:
  190. ik_step_size = get_step_size()
  191. end_effector_move_to_pos = np.array(end_effector_actual_pos) - np.array([0, ik_step_size, 0])
  192. end_effector_move_to_pos[2] = values["-Slider_Stepper0_FK-"]
  193. stepper_moveTo_angels_rel = np.array(stepper_actual_angels_rel) - np.array(
  194. ik_calculate_angels(end_effector_move_to_pos))
  195. stepper_actual_angels_rel = np.array(ik_calculate_angels(end_effector_move_to_pos))
  196. update_slider_values(stepper_actual_angels_rel)
  197. end_effector_actual_pos = end_effector_move_to_pos
  198. elif event == "-IK_Forward_Button-" and arm_isCalibrated == 1:
  199. ik_step_size = get_step_size()
  200. end_effector_move_to_pos = np.array(end_effector_actual_pos) + np.array([ik_step_size, 0, 0])
  201. end_effector_move_to_pos[2] = values["-Slider_Stepper0_FK-"]
  202. stepper_moveTo_angels_rel = np.array(stepper_actual_angels_rel) - np.array(
  203. ik_calculate_angels(end_effector_move_to_pos))
  204. stepper_actual_angels_rel = np.array(ik_calculate_angels(end_effector_move_to_pos))
  205. update_slider_values(stepper_actual_angels_rel)
  206. end_effector_actual_pos = end_effector_move_to_pos
  207. elif event == "-IK_Backward_Button-" and arm_isCalibrated == 1:
  208. ik_step_size = get_step_size()
  209. end_effector_move_to_pos = np.array(end_effector_actual_pos) - np.array([ik_step_size, 0, 0])
  210. end_effector_move_to_pos[2] = values["-Slider_Stepper0_FK-"]
  211. stepper_moveTo_angels_rel = np.array(stepper_actual_angels_rel) - np.array(
  212. ik_calculate_angels(end_effector_move_to_pos))
  213. stepper_actual_angels_rel = np.array(ik_calculate_angels(end_effector_move_to_pos))
  214. update_slider_values(stepper_actual_angels_rel)
  215. end_effector_actual_pos = end_effector_move_to_pos
  216. stepper_actual_angels_abs = calculate_angels_to_horizon(stepper_actual_angels_rel)
  217. end_effector_actual_pos = fk_calculate_position(stepper_actual_angels_abs)
  218. # Formate data before sending
  219. # str(arm_calibrate)
  220. data = "<" + str(0) + "," + str(stepper_moveTo_angels_rel[0]) + "," + str(stepper_moveTo_angels_rel[1]) \
  221. + "," + str(stepper_moveTo_angels_rel[2]) + "," + str(stepper_moveTo_angels_rel[3]) + ">"
  222. print(data)
  223. ser.write(data.encode())
  224. received_string = ser.readline().decode()
  225. print(received_string)
  226. stepper_moveTo_angels_rel = [0, 0, 0, 0]
  227. arm_calibrate = 1
  228. ser.close()
  229. window.close()